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Abstract Loss of connectivity and habitat destruction

may lead to genetic depletion of wild animal populations,

especially in species requiring large, connected territories

as the brown bear (Ursus arctos). Brown bear populations

of North Western Russia, Finland and Northern Norway

have been assumed to form one large, continuous popula-

tion; however this hypothesis has not been tested suffi-

ciently. We have genotyped 1,887 samples from 2005 to

2008 from four distinct areas and used the resulting DNA

profiles from 146 different individuals to analyze the

genetic diversity, population structure, and the migration

rates among groups. In addition, we have tested for traces

of previous genetic bottlenecks. Individuals from Eastern

Finland and Russian Karelia were grouped in the same

cluster (‘‘Karelia’’), while distinctive subpopulations of

brown bears were detected in the north (‘‘Pasvik’’), and

the east (‘‘Pinega’’). All three subpopulations displayed

high genetic variation, with expected heterozygosities (HE)

of 0.77–0.81, but differentiation among the clusters was

relatively low (average FST = 0.051, P \ 0.001). No

evidence of genetic bottlenecks in the past was found. We

detected a highly significant isolation-by-distance (IBD)

pattern. For Pasvik, self-recruitment was found to be very

high (96%), pointing to the possibility of genetic isolation.

In contrast, between Karelia and Pinega we detected high,

bi-directional migration rates (*30%), indicating genetic

exchange. Conclusively, despite of a substantial influence

of IBD on the genetic structure in the region, we detected

considerable variation in connectivity among the identified

clusters that could not be explained solely by the distance

between them.

Keywords Gene flow � Isolation-by-distance �
Non-invasive genetic sampling � Microsatellites �
Migration � Population structure

Introduction

Wild animal populations worldwide are increasingly faced

by the threat of fragmentation, isolation, and loss of con-

nectivity following habitat discontinuity and anthropogenic

disturbance. Due to their large home ranges, long genera-

tion time, roaming dispersal, and possible conflict with
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humans, large predators are prone to habitat fragmentation

(Crooks 2002; Miller and Waits 2003). After being almost

extirpated in most parts of Europe and North America,

some populations have recovered and we have just began

to understand the importance of large predators in terres-

trial ecosystems (Smith et al. 2003).

The connectivity, measured by the degree of differen-

tiation and the amount of migration events that take place

among populations, is expected to be strongly linked to

the long-term viability of a population (Long et al. 2005;

Schwartz et al. 2002). A stable connection among popu-

lations, i.e. migration of individuals, will ensure gene flow

and thus counteract genetic drift, which leads to genetic

depletion (Mills et al. 2003). However, direct measure-

ment of migrating brown bears using GPS equipped ani-

mals is expensive and time consuming (Whitlock and

McCauley 1999; Spong and Creel 2001; Solberg et al.

2006; Swenson et al. 2011). Capture and handling of wild

bears may also have harmful long-term effects on the

handled individuals (Cattet et al. 2008). Thus, as an

alternative approach, genetic methods based on non-

invasive sampling of hairs and faeces have been applied

to study movement of individuals and gene flow among

populations in both restricted and larger areas (Bellemain

et al. 2005; Proctor et al. 2005; Kendall et al. 2009; De

Barba et al. 2010).

The Northern European brown bear (Ursus arctos),

which was once widespread, has experienced severe

reductions, caused mainly by anthropogenic factors such as

habitat destruction and unrestrained hunting (Swenson

et al. 1994, 1995; Chestin 1999; Kojola et al. 2003;

Swenson et al. 2000; Danilov 2005). At the beginning of

the twentieth century the brown bear nearly disappeared

from Northern Europe. The Fennoscandian brown bear

populations reached their minimum at around the first half

of the last century. With the exception of areas in North

Western Russia, Eastern Finland and North Eastern Nor-

way, the brown bear was functionally extirpated in the area

(Kolstad et al. 1986; Elgmork 1990; Pulliainen 1990;

Nyholm and Nyholm 1999; Sørensen et al. 1999). During

the 1970s, brown bear populations in Fennoscandia and

Eastern Europe started to recover and to expand again

towards the west into areas where they had been extirpated

(Pulliainen 1983a, b, 1990; Swenson et al. 1994; Nyholm

1990; Nyholm and Nyholm 1999). In Sweden, effort-cor-

rected field observations combined with genetic studies

have shown that the population has recovered from an

estimated extreme bottleneck in the 1970s (N \ 50, Tall-

mon et al. 2004) to a population size of approximately

3,200 individuals in 2009 (Kindberg et al. 2009). Based on

field observations, the population size in Finland is esti-

mated to be between 900 and 1,000 brown bears (Wikman

2009), while at same time in Norway, 166 brown bears

were detected using non-invasive sampling and DNA-

methods (Wartiainen et al. 2010).

Russia is home to the probably largest brown bear

population in the world. Based on hunting and observations

of bears, Kolesnikov (2009) has estimated the population in

European Russia to be around 40,000 brown bears. North

Western Russia has been assumed to be the major reservoir

for large carnivores migrating into areas of Finland and

Northern Norway (Pulliainen 1990; Swenson and Wikan

1996). The respective border areas of both countries with

Russia include protected and unprotected zones which are

relatively pristine, and have been referred to as the ‘‘Fen-

noscandian Green Belt’’ as part of the European Green Belt

initiative (Karivalo and Butorin 2006). Trans-border brown

bear movements in both directions have been recorded

previously at these borders, but nevertheless population

numbers, densities as well as connectivity between the

populations remained obscure (Pulliainen 1990; Swenson

and Wikan 1996; Kojola et al. 2003).

Previous studies of brown bear mitochondrial genetic

variation suggested that the bears of Northern Eurasia form

a lineage distinct from other bear populations in Western

and Southern Europe (Taberlet and Bouvet 1994; Kohn

et al. 1995; Saarma et al. 2007). However, these results

represent only the maternal lineages and phylogeographic

connections on a broad time scale, which may not reflect

the current population structure and gene flow that are

important for ongoing conservation and management

actions (Waits et al. 2000). A recent study applying auto-

somal microsatellites to a number of bears in North Wes-

tern Eurasia was suggestive of large-scale gene flow in

northernmost parts of the region (Tammeleht et al. 2010).

Our general assumption and hypothesis is that the brown

bears in North Eastern Europe represent one unified genetic

population. To test this we have used samples from dif-

ferent monitoring projects across Fennoscandia and North

Western Russia and applied genetic methods to investigate

the population structure, connectivity and migration rates

of brown bear populations in the region. We also evaluated

the assumption that the region of Russian Karelia acts as a

source population for the neighbouring Finnish and Nor-

wegian bear populations, and we have tested if the dra-

matic decline in bears during the nineteenth and twentieth

centuries within these populations left any signs to their

genetic composition.

Materials and methods

Sampling

Genetic sampling of brown bears was carried out between

2005 and 2008 in four areas in North Western Europe with
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previous and ongoing brown bear monitoring (Swenson

and Wikan 1996; Kojola et al. 2003; Danilov 2005): (1)

The Pasvik area including parts of Norway, Finland and

Russia at *67–70�N, *25–30�E, (2) the Kainuu area in

Finland and in Northern Karelia in Russia at *63–65�N,

*29–30�E, (3) in Southern Karelia in Russia at

*60–62�N, *31–37�E and (4) the Pinega Strict Nature

Reserve in Archangelsk, Russia at *64�N, *43�E.

(Fig. 1a). Distance between the research areas of Pasvik

and Kainuu/Northern Karelia as well as between Southern

Karelia and Pinega was about 600 km. Distance between

the North and the South Karelian sampling area was about

150 km. Pasvik and Pinega sampling areas were furthest

from each other with an approximate terrestrial distance of

1,200 km. Faeces and hairs were collected opportunisti-

cally in the field. Scats were stored either in stool collection

tubes with DNA stabiliser (Invitek) or in plastic bags and

kept at -20�C until DNA extraction. In the Pasvik study

area, we also collected hair samples systematically within a

geographic grid using hair snares following a method

modified from Woods et al. (1999). The hair samples were

stored dry and dark in paper envelopes until DNA-extrac-

tion. In addition, for the study areas of Northern and

Southern Karelia in Russia, we obtained 34 tissue samples

originating from bears legally harvested from 2005 to

2007, which were stored in ethanol at -20�C until DNA

extraction.

DNA extraction and microsatellite genotyping

We extracted DNA from faeces using the PSP Spin Stool

DNA Plus Kit (Invitek) and from hairs and tissues we used

the DNeasy Tissue Kit (Qiagen) by following the manu-

facturers’ instructions. We ran all samples with selected

markers in order to check for successful extraction and

quality of the sample, followed by the genotyping using 13

different dinucleotide markers (Short-tandem-repeats,

STRs) originally developed for bears: G1A, G1D, G10B,

G10L (Paetkau and Strobeck 1994, 1995; Paetkau et al.

1995); Mu05, Mu09, Mu10, Mu15, Mu23, Mu26, Mu50,

Mu51, and Mu59 (Taberlet et al. 1997) plus one marker for

sex determination using the primers SE47 (Yamamoto

et al. 2002) and R143 (50-AGGTGGCTGTGGCGGCA-30).
PCR and fragment analysis were performed as previously

described by Eiken et al. (2009).

The samples were genotyped independently two times if

heterozygous and three times if homozygous for the spe-

cific markers (peak height threshold values [300 RFU).

For a sample to be assigned an identity, all runs across all

markers had to be consistent. If this was not the case, the

Fig. 1 a The sampling location of the 146 different brown bears,

represented by a circle. Genotyping with 13 different STRs identified

individuals from the research areas in Pasvik: n = 41 (Norway,

Finland and Russia); Kainuu/Northern Karelia: n = 60 (Finland and

Russia); Southern Karelia: n = 18 (Russia); and Pinega: n = 27

(Russia). The membership (coefficient C0.7) of the genotypes of each

of the individuals were assigned with the program Structure (Pritchard

et al. 2000), and the cluster assigned to each genotype is indicated by

different colours: Pasvik (black), Karelia (yellow) and Pinega (red).

Genotypes with a probability of cluster membership coefficient\0.7,

(n = 20; blue circles) could not be assigned to any of the detected

clusters. b The reindeer husbandry area in Northern Europe (orange)
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sample was not assigned an identity and discarded from

further analyses. Evaluations leading to consensus DNA

profiles were not used in our study. We only accepted

single negative result for STRs if the sample showed

consistent results for the overall DNA profile. Negative

controls were run for every eight samples, two positive

controls were run first and last on the 96-well plates. PCRs

for the sex determination were run twice with positive

controls. Our procedures followed the strict guidelines for

forensic examination of animal DNA material, which are

in accordance to the requirements published recently by

Linacre et al. (2011). The uniqueness of the DNA pro-

files was verified by calculating the probability of identity of

each sample using the software Gimlet version 1.3.3 (Valiere

2002). Tests for allelic dropout, presence of null alleles,

and scoring errors caused by stutter peaks were performed

with Micro-Checker version 2.2.3 (Van Oosterhout et al.

2004).

Population structure

In order to detect population structure and thus possible

areas of genetic discontinuity, we used the spatial explicit

model as implemented in the software Geneland version

3.2.4 (Guillot et al. 2005). We ran five independent runs,

where the parameters for possible populations were

K = 1–10, and the number of MCMC iterations was

1,000,000, saving every 100th. The maximum rate of

Poisson process was set to 100.

Additionally, we studied possible population structure

using the Bayesian approach implemented in program

Structure version 2.3.3 (Falush et al. 2003; Hubisz et al.

2009; Pritchard et al. 2000), which allows detection of

modest population differentiation. For this analysis we

assumed population admixture and correlated allele fre-

quencies within the populations. We carried out 10

independent runs for each value of K (number of subpop-

ulations) between one and ten. Program parameters inclu-

ded a burn-in period of 100,000 Markov Chain Monte

Carlo (MCMC) iterations, followed by sampling of

1,000,000 iterations. If there is hierarchical structure in the

studied population, the log-likelihoods estimated with the

Structure program does not necessary reflect the real

number of clusters (Evanno et al. 2005). Therefore, we

estimated the rate of change in the log probability of data

between successive K values (DK) as described by Evanno

et al. (2005) to determine the most likely number of

clusters.

The factorial correspondence analysis (FCA) in the

program Genetix 4.05.2 (Belkhir et al. 1996–2004) was

used to visualize the relative similarity among samples and

possible genetic structure within each region in a multi-

variate space. We used program Arlequin (version 3.5.1.2;

Excoffier and Lischer 2010) to perform the AMOVA

analysis to reveal genetic structure among regions, among

populations and within populations using 10,000 permu-

tations. We also used the program Arlequin to estimate

pairwise FST values (Weir and Cockerham 1984) among

each population (10,000 dememorization steps, 100 bat-

ches and 500 iterations per batch).

Genetic diversity and inbreeding

Observed and expected heterozygosities as well as allele

numbers, inbreeding coefficients and linkage disequilib-

rium for all sampled populations were estimated using the

software Genetix 4.05.2 (Belkhir et al. 1996–2004). We

used the method of Black and Kraftsur (1985) to test for

linkage disequilibrium among pairs of loci in each popu-

lation. Genepop version 4.0 (Rousset 2008) was used for a

global test for deviations from Hardy–Weinberg equilib-

rium (HWE) using Fisher’s method (Rousset and Raymond

1995) across all loci and populations. All combinations of

populations were tested with unbiased P values by a

Markov chain method of 1,000 dememorization steps, 500

batches and 1,000 iterations per batch.

Migration and isolation-by-distance

We estimated migration rates between the populations

using the private allele method (Barton and Slatkin 1986).

In addition we estimated recent migration rates among the

detected subpopulations with the program BayesAss 1.3

(Wilson and Rannala 2003). The program uses a Bayesian

approach to calculate asymmetric proportion of non-

migrants and inter-population migration rates. We per-

formed 6,000,000 burn-in iterations followed by 3,000,000

iterations and a thinning of 2000. Initial input parameters

of allele frequencies, migration and inbreeding coefficient

were set at 0.15 for each respectively. Three independent

runs were carried out to confirm consistency of results.

Differences between migration rates were considered sig-

nificant in cases where the 95% confidence intervals from

the posterior distribution did not overlap.

When analyzing possible population subdivision of a far

ranging mammal, as the brown bear, an effect of isolation-

by-distance (IBD) has to be considered (Forbes and Hogg

1999). We used the software Spagedi version 1.3 (Hardy

and Vekemans 2002) to estimate the correlation between

geographical distance and relatedness among pairs of

individual brown bears (Hardy 2003) using the kinship

coefficient by Loiselle et al. (1995). This estimator weights

the allele contribution and is not influenced by bias in the

presence of low frequency alleles. Estimates for standard

errors for average multilocus statistics were obtained by

jackknifing over loci.
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Population bottlenecks

For all subpopulations, we used the program Bottleneck

1.2.02 (Cornuet and Luikart 1997; Luikart et al. 1998; Piry

et al. 1999) to detect whether the heterozygosity was larger

than the heterozygosity expected from the number of

alleles found in the sample given that the population was at

mutation drift equilibrium. We applied the two-phase

mutation model using 95% single-step mutations to esti-

mate the expected heterozygosities (20,000 iterations).

Significance of the differences between observed and

expected heterozygosities were tested using the Wilcoxon

test. Because the heterozygosity excess persists only a

certain number of generations until a new equilibrium is

established (0.2–4Ne generations; Luikart and Cornuet

1998), the detection of a past bottleneck is limited using the

method above. The ratio of the number of alleles with

respect to allele size range decreases after a population

reduction and can be detected after up to approximately

125 generations following a severe population bottleneck

(Garza and Williamson 2001). We calculated such ratios

(hereafter Garza-Williamson indices) with the software

Arlequin 3.5.1.2 (Excoffier and Lischer 2010).

Results

Sampling and molecular analysis

A total of 1,887 bear samples were collected throughout the

four areas between 2005 and 2008 (Fig. 1a; Table 1). The

distance between the research areas are given in ‘‘Materials

and methods’’. From these 1,887 samples, 854 samples

could be successfully genotyped, 906 did not contain enough

DNA, and 127 samples were discarded because of incon-

sistent genotyping results. We identified in total 215 dif-

ferent individuals (Table 1). In two of the four areas (Pasvik

and Pinega) sampling was carried out within a relatively

restricted area (see Fig. 1a), and in order to avoid possible

overrepresentation of family members (Anderson and

Dunham 2008) a subset of bears was selected randomly for

further genetic analysis. In the resulting dataset of 146

individuals, we observed consistent DNA typing results in

13 STRs for 124 of the individuals, while 15 individuals

lacked data for one STR, six individuals lacked data for two

STRs and one individual lacked data for four STRs. We

chose to also include these 22 individuals that were lacking

results for single STRs in the following genetic analysis as

their DNA profiles were consistent for all other markers.

Analysis using Micro-Checker did not suggest allelic

dropout, presence of null alleles, or scoring errors in our

microsatellite data of the 146 individuals. Our dataset is

accessible from supplementary Table S1.

Population structure

The FCA-analysis suggested geographic structuring among

the sampled regions (Fig. 2). Bears from Pasvik and Pinega

regions tended to belong to specific and separate clusters.

However, there was considerable overlap between bears

from North and South Karelian regions. The Bayesian pro-

gram Structure, with correction using Evanno’s ad-hoc

approach (Evanno et al. 2005), showed the highest DK for

K = 3 clusters (Figs. 3, 4a), as did the analysis with geo-

graphic coordinates and correlated allele frequencies used as

prior with Geneland (Fig. 4b). Lower membership coeffi-

cient of a few genotypes could indicate admixture between

the populations and may point to possible migrants. Across

all individuals, 26 (17.8%) genotypes showed an estimated

membership coefficient of\0.7 for their original sampling

area. Out of these 26 genotypes, nine individual genotypes

could be assigned to one of the other two clusters i.e. for

Pasvik two such genotypes (4.8%) could be assigned to

Karelia; for Karelia, two genotypes were assigned to Pasvik

(3.3%) and one to Pinega (1.7%); and in Pinega, one geno-

type could be assigned to Pasvik (3.7%) and three to Karelia

(11.1%). 17 (11.6%) genotypes with a membership coeffi-

cient \0.7 could not be assigned to one of the detected

clusters. These specific assignments of individual genotypes

are illustrated by different colors for all of the clusters in

Figs. 1a, 4a. Additional analyses with Bayesian algorithms

for each of the four sampled groups did not reveal further

sub-structure. Thus, all subsequent analyses involving pop-

ulation substructure were conducted in accordance to the

Table 1 Brown bear samples collected in four different geographical

regions in North Western Europe between 2005 and 2008

Pasvik Northern

Karelia

Southern

Karelia

Pinega

Samples in total 1,339 104 18 426

Faeces 827 89 0 426

Hair 499 0 0 0

Tissue 13 15 18 0

Samples with assigned ID 644 93 18 99

Samples with no ID 70 0 0 57

Negative samples 625 11 0 270

Number of males 48 33 15 28

Number of females 28 26 3 15

Unidentified sex 5 1 0 13

Numbers of bears in total 81a 60 18 56a

The DNA profiles and individual identity (ID) were determined using

13 different STR markers, and gender was determined using an

amelogenine XY-assay (see ‘‘Materials and methods’’)
a From Pasvik and Pinega a subset of 41 and 27 individuals respec-

tively were used in the population genetic analyses (see ‘‘Materials

and methods’’)
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detected three clusters Pasvik, Karelia and Pinega. AMOVA

analysis revealed significant geographic structuring of these

three populations. Most of the variation (95%) appeared to be

within populations, and the variation between populations

was also highly significant (P \ 0.001; 1,023 permutations)

and explained 5% of the total variation. The population

pairwise FST values were significant for all population pairs

(P \ 0.001): Pasvik versus Karelia = 0.049, Pasvik versus

Pinega = 0.064 and Karelia versus Pinega = 0.048. The

overall FST-value was 0.051 (P \ 0.001).

Genetic diversity and inbreeding

Among the genetic groups, we found that Pasvik and

Pinega conformed to HW expectations. However, the

population of bears from Karelia showed significant devi-

ations from HWE associated with significant and positive

FIS-values at the loci MU23, MU26 and G10B. Table 2

summarises the results for the three clusters showing the

number of alleles and values for expected and observed

heterozygosities. Mean expected and observed heterozy-

gosities were between 0.76 and 0.81 in all three groups.

Only two loci, MU26 and MU23, showed observed het-

erozygosities lower than 0.6. After sequential Bonferroni

correction, we found 11 pairs of loci (14.1%, P \ 0.05)

with significant linkage disequilibrium. These pairs of loci

were different in all sampled areas and none of the pairs of

loci showed linkage disequilibrium in samples from more

than two areas.

Migration and isolation-by-distance

The mean frequency of private alleles among the popula-

tions was 0.039, suggesting reasonable amount of migrants

among them (Nm = 2.2). The results of the Bayesian

approach of detecting asymmetrical migration rates

showed that in the Pasvik population the self-recruitment

was about 96% (CI 0.915–0.994; Table 3). We found

Fig. 2 Two-dimensional

factorial correspondence plot

using Genetix 4.05.2 (Belkhir

et al. 1996–2004) for allele

frequencies at 13 microsatellite

loci from brown bears sampled

in: Pasvik (black squares),

Kainuu (white), Northern

Karelia (blue), Southern Karelia

(yellow) and Pinega (red)

Fig. 3 Rate of log-likelihood

values (DK) for samples from

all the individual bears for

different number of clusters

from the program Structure

(Pritchard et al. 2000) post-

processed with Evanno’s

approach (Evanno et al. 2005)
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migration rates of about 30% (CI 0.256–0.328) from Kar-

elia to Pinega, whereas the rate from Pinega into Karelia

was about 32% (CI 0.299–0.332).

We detected a significant, negative relationship between

kinship and spatial distance between pairs of individuals

(b = -0.015; P \ 0.001; Fig. 5), pointing to IBD. All ten

Fig. 4 a The individual Q-matrix based on the probabilities of the

results using Structure. The colours represent the different popula-

tions (Pasvik, Karelia (Kainuu, North Karelia, South Karelia) and

Pinega) detected with K = 3 clusters and each bar correspond with a

single individual, in which the height of the bar represents the

probability of that individual bear belonging to the particular cluster.

The black colour bars show cluster one, yellow represents cluster two

and cluster three is marked in red colour. b Map and probabilities of

population membership calculated with Geneland. The dots represent

individuals sampled in Pasvik, Karelia (Kainuu, North Karelia, and

South Karelia) and Pinega. Bears belonging to the same cluster are

shown in the lighter colored area

Table 2 Number of alleles (A) and observed (HO) and expected heterozygosity (HE) as well as the inbreeding coefficients (FIS) of the sampled

regions

Locus Pasvik (n = 41) Karelia (n = 78) Pinega (n = 27)

A HE HO FIS A HE HO FIS A HE HO FIS

MU05 7 0.82 0.90 -0.088 9 0.79 0.77 0.039 10 0.84 0.82 0.043

MU09 12 0.86 0.81 0.072 9 0.87 0.85 0.038 9 0.82 0.93 -0.105

MU10 6 0.75 0.68 0.098 10 0.79 0.76 0.046 8 0.81 0.80 0.032

MU15 6 0.76 0.81 -0.045 9 0.80 0.85 -0.054 6 0.70 0.82 -0.138

MU23 7 0.71 0.68 0.048 9 0.84 0.69 0.188* 8 0.66 0.58 0.141

MU26 5 0.57 0.50 0.130 8 0.67 0.56 0.169* 7 0.74 0.56 0.264*

MU50 8 0.84 0.88 -0.031 8 0.74 0.71 0.047 10 0.79 0.89 -0.111

MU51 7 0.82 0.83 0.002 10 0.83 0.77 0.071 8 0.78 0.78 0.020

MU59 10 0.81 0.85 -0.046 15 0.90 0.92 -0.013 12 0.89 0.92 -0.018

G1A 8 0.78 0.81 -0.015 9 0.80 0.80 0.008 8 0.84 0.96 -0.127

G1D 9 0.86 0.98 -0.122 9 0.82 0.81 0.014 8 0.83 0.89 -0.059

G10B 9 0.75 0.73 0.035 11 0.85 0.65 0.246* 8 0.82 0.85 -0.016

G10L 9 0.69 0.71 -0.007 10 0.78 0.75 0.046 8 0.82 0.81 0.039

Mean 7.9 0.77 0.78 -0.002 9.7 0.81 0.76 0.064* 8.5 0.80 0.81 -0.005

SD 1.9 0.08 0.12 1.8 0.06 0.09 1.5 0.06 0.12

* P \ 0.05
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distance classes showed highly significant deviation from

the population mean.

Population bottlenecks

The allele frequency distribution of the three distinctive

genetic groups of bears (Pasvik, Karelia and Pinega)

showed no signs of population bottlenecks. All tests for

heterozygote excess were negative (Wilcoxon test;

P [ 0.340 for all populations). Similarly, the Garza-Wil-

liamson-indices represented values typically found in sta-

ble populations (Pasvik M = 0.79 (±0.12), Karelia

M = 0.83 (±0.14), and Pinega M = 0.81 (±0.13), with the

average value M = 0.81 (±0.13).

Discussion

Previous research assumed that the brown bears of Northern

Norway, Eastern Finland and North Western Russia form

one, unified population (Pulliainen 1990; Swenson and

Wikan 1996), and, moreover, that the region of Russian

Karelia acts as a source population for the Finnish and

Norwegian bear populations. We have used genetic methods

to investigate these assumptions by determining the degree

of differentiation and migration among areas with high

brown bear densities in the region. Our results indicate a

substantial influence of IBD on the genetic structure as well

as the existence of at least three separate genetic clusters in

Pasvik, Karelia and Pinega, respectively. However, these

three subpopulations were not completely isolated from each

other. Specifically, we found that the northernmost cluster in

the area of Pasvik showed restricted connectivity with the

clusters of Karelia and Pinega, while we detected substantial

bidirectional gene flow between Karelia and Pinega. In

addition, we found that brown bears from Eastern Finland

(Kainuu) indeed belong to the population of Russian Karelia.

Differentiation caused by IBD in continuous populations

of large predators is expected from previous studies (For-

bes and Hogg 1999; Aspi et al. 2006). Recent empirical

studies as well as simulations on data of wild animal

populations have also suggested that more than one

Bayesian algorithm on the genetic data should be employed

to avoid false results caused by sampling design and IBD

(Pritchard et al. 2000; Latch et al. 2006; Robinson et al.

2007; Rowe and Beebee 2007; Schwartz and McKelvey

2009; Frantz et al. 2009). The interpretation of genetic

clusters deduced from different Bayesian assignment tests

can be challenging and should be done cautiously, espe-

cially when IBD is a likely underlying mechanism and

when samples from the areas between the detected clusters

are missing (Robinson et al. 2007; Rowe and Beebee 2007;

Frantz et al. 2009). Moreover, sampling should be con-

ducted in a short temporal scale (Anderson et al. 2010).

Table 3 Bayesian analysis of migration with the program BayesAss resulted in this matrix on the high rate of self-recruitment within the

population of Pasvik and migration rates between the bear populations of Karelia and Pinega

Pasvik CI Karelia CI Pinega CI

From Pasvik to 0.96 0.915–0.994 0.01 0.000–0.029 0.02 0.001–0.062

From Karelia to 0.01 0.000–0.050 0.67 0.667–0.682 0.30 0.256–0.328

From Pinega to 0.02 0.003–0.062 0.32 0.299–0.332 0.68 0.667–0.710

Fig. 5 Kinship coefficient

plotted against the mean

distance between the pairs of

individuals of the sampled

brown bears with the software

Spagedi 1.3 (see ‘‘Materials and

methods’’). All ten distance

classes differ significantly

(P \ 0.001) from the mean

kinship of the population
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In this study, we have collected samples discontinuously

from four regions in a timeframe of four years and used

Bayesian algorithms widely applied in population genetic

studies, both with and without spatial information. The

pairwise FST-values (0.48–0.64) were significant and in

accordance to the threshold of Pritchard et al. (2000),

suggested for correct assignment with their program

Structure. Latch et al. (2006) reached 97% assignment

accuracy with an FST-value above 0.05. The relatively low

FST-values in our study could indicate high current gene

flow or recent common ancestry (Wright 1969; Schwartz

et al. 2002). In the light of our results and the history of

these populations, the latter may be the case for the pop-

ulation of Pasvik bears according to sub structuring and

migration rates, while high gene flow seems to occur

between the clusters of Karelia and Pinega.

Recently, studies of the mitochondrial DNA (mtDNA)

of brown bears have shown that bears from Finland and

Western Russia belong to the Eurasian clade, with a few

distinctive haplotypes (Saarma et al. 2007; Korsten et al.

2009). In Finland, only two different haplogroups have

been identified (Saarma and Kojola 2007). One of these

haplogroup was only found in Southern Finland, while the

other was represented throughout the country. However,

mtDNA results represent different genetic timescales and

our results should rather be compared to a recent study of

autosomal STRs that have been analysed in Western Eur-

asian brown bears (Tammeleht et al. 2010). Results of that

study were suggestive of large-scale gene flow among

distantly located populations such as Arkhangelsk and

Eastern Finland. However, this study was performed over a

time span of 11 years and did not include samples from

Karelia. Thus, the very long time span of sampling as well

as the lack of samples from the substantial population in

Karelia may be the reason why the authors could not detect

the genetic sub structuring within the region. Both studies

found a pattern of IBD, suggesting that IBD must play an

important role in shaping bear populations in North Wes-

tern Europe. Conclusively, our observations may be

explained as a result of a combination of IBD and restricted

migration and gene flow. However, the factors that may

limit the genetic exchange and causing the clusters of the

northernmost areas in Fennoscandia and the more southern

regions in Finland and Russia are unknown.

All clusters displayed high genetic variation and the

heterozygosities were among the highest reported in wild

brown bear and similar to the values found previously in

Russia ([0.76, Tammeleht et al. 2010) and higher than in

Sweden (\0.7, Waits et al. 2000; Stoen et al. 2005). A

deviation from HW expectations was found for the Kar-

elian subpopulation and a more detailed analysis showed

that it was mainly relevant for bears from the western edge

of the population (Kainuu; results not shown). We also

found elevated FIS-values for a few STRs in the same

population. We did not detect any further population sub-

division within Karelia caused by the Wahlund effect in

our data. Similar findings have been described earlier in an

expanding brown bear population in Sweden (Waits et al.

2000), and population expansion may also explain our

results.

Despite the high genetic diversity, we found a low

number for overall migrants. However, a few migrants

could be enough to keep the populations healthy and

genetically diverse (Hedrick 1995; Mills and Allendorf

1996). Connectivity and gene flow between the brown

bears from Karelia and Pinega (*600 km) was detected

and we found high bi-directional migration among these

populations, opening the possibility that both clusters may

belong to a common population shaped by IBD. Conclu-

sively, more sampling in the region is needed. In contrast to

this, we found the Pasvik population (*600 km distance to

Karelia; *1,200 km distance to Pinega) to be quite iso-

lated from the rest of the bear populations, showing very

low bi-directional migration. The result from Structure

(Fig. 4a) seems to suggest considerable admixture of

genotypes sampled in Pasvik with genotypes originating

from Pinega. However, only three individuals showed a

slightly higher probability of assignment to the cluster of

Pinega, than to Pasvik. We do not think these few indi-

viduals are enough to lead to a contradictory interpretation.

Based on all our results we believe the differentiation

between Pasvik and Karelia is unlikely to be solely caused

by IBD. The high genetic variation found in Pasvik could

still be representative of past connectivity with the Russian

Karelian population, or indicate that this population is or

was part of another, still not characterized subpopulation of

brown bears, which may be located on the Kola Peninsula.

Bears in Northern Fennoscandia and Russia are not

distributed uniformly and field observations indicate that

population densities may vary (Kojola et al. 2003; Danilov

2005; Wikman 2009). The areas of higher bear abundance

are characterized by being concentration areas of females

and their densities are estimated to decrease significantly

outside the core areas, such as for Karelia (Kojola and

Heikkinen 2006) and is represented in our sampling. Cli-

mate and habitat barriers to dispersal as well as ecological

and behavioral processes might have influenced the amount

of migration and connectivity among the bears in the

northern parts, as have been described for wolves (Car-

michael et al. 2001; Geffen et al. 2004; Pilot et al. 2006;

Musiani et al. 2007). Aspi et al. (2009) found patterns of a

possible recent reduction of connectivity among popula-

tions of grey wolves in Eastern Finland and Russian Kar-

elia. Furthermore, variations in the habitat and landscape

due to forestry policies may have caused differences in the

distribution and migration of the bears among Russia,
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Finland and Norway in the recent past (Gromtsev et al.

2009; Linden et al. 2000). We believe that in the large

wilderness areas of North Western Europe more such

specified differences may be found when more individuals

are sampled at additional locations.

Another factor influencing gene flow between the

regions and the isolation of Pasvik bears may be the

presence of a border fence and the reindeer husbandry area.

While the so called green belt, the forested area along the

Finnish-Russian as well as Norwegian-Russian border, may

play an important role as pristine retreat area, border

fencing may have a negative influence on migration of

larger mammals (Aspi et al. 2009). The continuous border

fence, originating from Soviet times, is located all along

and in close proximity to the state border of Russia. The

reindeer husbandry area (Fig. 1b), covering one third of

Finland, is fenced and semi-domestic reindeer roam free

during summer. Special legislation for large predator

removal is keeping the population density for large carni-

vores to a minimum. The area could be another reason for

the lack of connectivity of Pasvik with the other popula-

tions further south as it constitutes an obstacle for large

carnivores. This is indicated by the fact that, despite no

obvious geographical barriers, such as water bodies or

mountains, only a few individual wolves have succeeded in

migrating through that area (Wabakken et al. 2001; Vila

et al. 2003). Substantial data proving that this is the case for

brown bears as well are still lacking.

Brown bears of Finland, Northern Norway and North

Western Russia share the same history and they may have

originated from the same population (Taberlet and Bouvet

1994; Saarma et al. 2007). All three populations have

experienced substantial reduction in their sizes (Ermala

2003; Danilov 2005). Despite this recorded demographic

bottleneck, we did not find any evidence of a genetic

bottleneck having occurred in either of the studied popu-

lations in the past. There may be several reasons for the

inconsistence between the historical records and our

genetic findings. Firstly, the population sizes may have

been underestimated, particularly during the period

between 1900 until the late 1970s. However, the hunting

statistics showed large numbers of harvested bears and

affirmed a drastic population decline nearing extirpation

for that period (Ermala 2003). And secondly, undetected

migration and gene flow with bear populations in the east

may have taken place. Even though the estimates for brown

bears in North Western Europe and Russia, such as Karelia,

indicated a population decline (Swenson et al. 1995;

Danilov 2005), the numbers of bears in these or neigh-

bouring regions might have been sufficient enough to

maintain a certain degree of gene flow among these areas to

avoid a genetic bottleneck.
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